

MEDIDOR DE VAZÃO PARA LÍQUIDOS TIPO ULTRA SÔNICO COM TOTALIZADOR E VAZÃO INSTANTÂNEA

Medidor de caudal por ultrasonidos no invasivo para líquidos

- Modelo CU100: caudalímetro de instalación no invasiva, con los transductores montados en el exterior de la tubería
- Instalación en tubería horizontal o vertical
- Montaje fácil y económico, sin interrupciones en el proceso productivo
- Sin pérdida de carga
- Sin riesgo de fugas
- No requiere mantenimiento
- Permite medición de caudal en procesos a alta presión
- Display gráfico con menús intuitivos
- Posibilidad de programación mediante PC y software Winsmeter CU
- Rango de velocidad: 0,2 ... 12 m/s
- Precisión: ±1,5% valor leído ± 0,02 m/s
- Conexiones: montaje exterior en tuberías de diámetro DN80 ... DN2000. Instalación opcional mediante guía o abrazaderas de fijación
- Materiales: Transductores: Aluminio anodizado Caja convertidor electrónico: ABS Guía fijación: Aluminio anodizado -Abrazadera fijación: EN 1.4301 (AISI 304)
- Convertidor electrónico para montaje mural:

Alimentación: 85 ... 265 VAC Indicación de caudal y velocidad Salida 420 mA programable proporcional al caudal Totalizador de volumen 2 salidas de relé programables

Modelo CU100

Principio de funcionamiento

El medidor de caudal modelo CU100 es un equipo electrónico que se basa en la transmisión de señales de ultrasonidos a través de una tubería donde circula un líquido. El principio de funcionamiento se denomina por tiempo de tránsito.

Dos transductores de ultrasonidos, actuando alternativamente como emisorreceptor y colocados convenientemente en una tubería, envían una señal ultrasónica primero en un sentido $(A \rightarrow B)$ y posteriormente en sentido inverso $(B \rightarrow A)$.

Un procesador digital mide ambos tiempos de tránsito. Cuando no hay caudal en la tubería, estos tiempos $(A \rightarrow B \ y \ B \rightarrow A)$ son iguales, pero cuando hay un flujo a una cierta velocidad, los tiempos de ida y de vuelta son distintos $(A \rightarrow B \ disminuye,$ mientras que $B \rightarrow A$ aumenta). La diferencia entre estos tiempos es proporcional a la velocidad del líquido en la tubería.

Un circuito electrónico basado en procesado digital de señal convierte esta diferencia de tiempo de tránsito en un caudal.

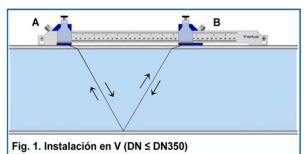


Fig. 2. Instalación en Z (DN > DN350)

Aplicaciones

- Tratamiento y distribución de agua
- Industria alimentaria, farmacéutica, química y papelera
- Circuitos de calefacción y refrigeración
- Piscinas y sistemas de riego
- Instalaciones contra incendios
- Industria de automoción
- Plantas energéticas

Características técnicas

- Precisión: ±1,5% valor leído ± 0,02 m/s
- Repetibilidad: ±0,25% valor leído ± 0,01 m/s
- Indicación de caudal en unidades métricas o imperiales
- Rango de velocidad: 0,2 ... 12 m/s

- Densidad y viscosidad del líquido: no hay restricciones
- Temperatura del líquido: 20°C ... +80°C Otras bajo demanda
- Temperatura ambiente: 20°C ... +60°C
- Presión de trabajo: no hay restricciones
- Conexiones: montaje exterior a tubería. Instalación opcional mediante guía o abrazaderas de fijación. Apto para tubería de DN80 ... DN2000

Especificaciones mecánicas

· Convertidor electrónico:

Material caja: ABS

Medidas: 229 x 203 x 62 mm Índice de protección: IP65

Prensaestopas: Alimentación y salidas: 3 x M16x1,5

para cables entre 3,5 y 10 mm de diámetro -

Transductores: 2 x PG7 para cables entre 1,5 y 5 mm de

diámetro

Display: gráfico de 128 x 64 puntos Teclado: 12 teclas mecánicas

Cable longitud normalizada 5 m para unión transductoresconvertidor suministrado Longitud

máxima de cable 50 m bajo demanda

· Transductores:

Material: Aluminio anodizado Medidas: 60 x 25 x 44 mm Índice de protección: IP65

• Sistema de fijación:

Materiales: Guía de posicionamiento: Aluminio anodizado Medidas: 500 x 41 x 65 mm Abrazadera de

fijación: EN 1.4301 (AISI 304)

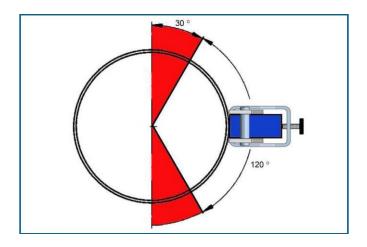
Especificaciones eléctricas

- Alimentación: 85 ... 265 VAC 50 / 60 Hz
- Consumo: ≤ 5 VA
- Indicación de caudal y velocidad: nº de dígitos: 5 (hasta 2 decimales configurables) Tamaño del dígito: 11 mm
- Salida analógica: 420 mA, activa o pasiva. Aislada galvánicamente de la alimentación
- Salidas de relé: dos. Tensión máxima: 250 VAC Intensidad máxima: 8 A Potencia máxima: 500 VA
- Totalizador: nº de dígitos: 8 (2 decimales) Tamaño del dígito: 8 mm Reset: mediante teclado
- Software asociado Winsmeter CU disponible para descarga en www.tecfluid.com. Conexión USB para comunicación con convertidor

Instalación

Para una medida precisa del caudal, el caudalímetro por ultrasonidos modelo CU100 requiere tramo recto de tubería de mínimo 5 x DN antes y después del caudalímetro. La distancia necesaria depende del perfil de flujo, que puede verse alterado según el elemento perturbador que exista en la instalación antes y/o después de los transductores, tal y como se indica en la siguiente tabla:

Elemento perturbador S	i el elemento está antes del CU100	Si el elemento está después del CU100
Bomba	50 x DN	
Te	50 x DN	10 x DN
Válvula	40 x DN	10 x DN
Difusor	30 x DN	5 x DN
Reductor	10 x DN	5 x DN
Codo 90º	10 x DN	5 x DN
2 x codo 90º en mismo plano	25 x DN	5 x DN
2 x codo 90º en diferente plano	40 x DN	5 x DN


En tuberías horizontales, se recomienda la instalación de los transductores en los laterales de la misma, nunca en la parte inferior o superior (Fig. 3), para evitar que acumulaciones de aire o deposiciones de sólidos puedan interferir en la lectura.

La instalación de los transductores puede realizarse:

Tubería DN80 ... DN350: mediante guía graduada y abrazaderas de fijación suministradas por Tecfluid (Fig. 4), instalación en V. Montaje opcional mediante abrazaderas de fijación directas sobre transductor (Fig. 5).

Tubería DN400 ... DN2000: mediante abrazaderas de fijación directas sobre transductor, suministradas por Tecfluid (Fig. 5), instalación en Z. Para estos tamaños de tubería los transductores deben instalarse en oposición y la guía de posicionamiento no está disponible.

Una vez programados los parámetros de instalación (material de tubería, diámetro y espesor, líquido de trabajo,...), el convertidor calcula la distancia que debe mantenerse entre ambos transductores.

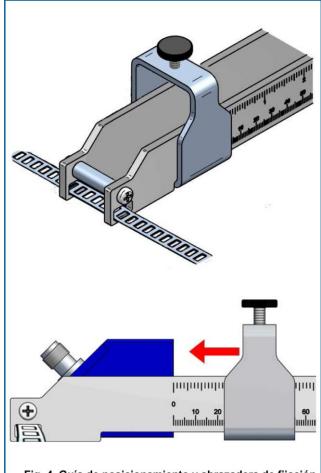


Fig. 4. Guía de posicionamiento y abrazadera de fijación DN80 ... DN350

Dimensiones

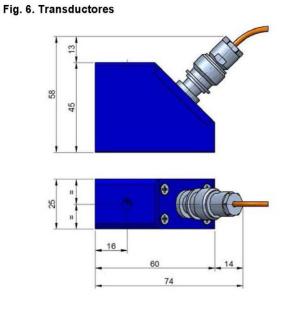


Fig. 7. Convertidor CU100

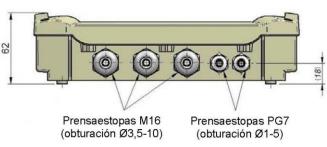
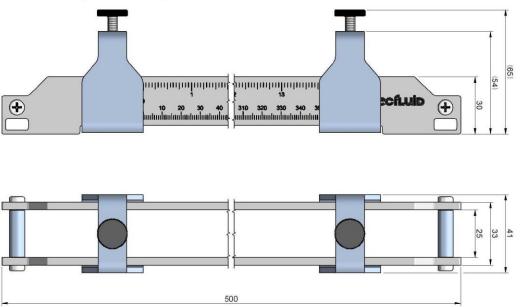
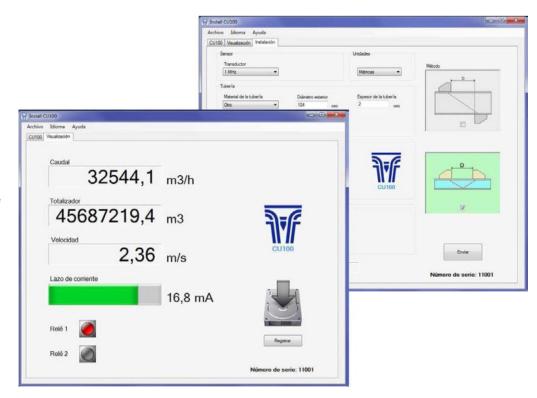



Fig. 8. Guía de posicionamiento (DN80 ... DN350)



Programación mediante software

Tecfluid pone a disposición del usuario el software Winsmeter CU, que posibilita la programación completa del convertidor mediante PC, de manera rápida e intuitiva.

El software puede descargarse en www.tecfluid.com.

La conexión entre PC y convertidor se realiza cómodamente mediante cable USB (no suministrado).

